
Novel Material Processing Using Ultrafast Laser Technology June 2006

> Logan DesAutels, Dr. Chris Brewer, Dr. Mark Walker, and Dr. Peter Powers

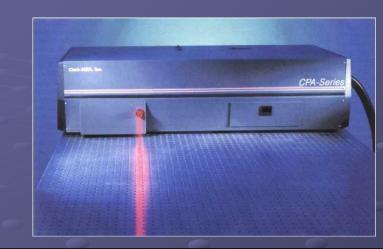
Air Force Research Laboratory

University of Dayton

Introduction

- 1. Motivation of Work
- 2. Anamorphic Lens Design/Analysis
- 3. Anamorphic Grating Experimental Setup
- 4. SiC Semi-insulating Experimental Results
- 5. SiC Conducting Experimental Results
- 6. SiC Raman Results
- 7. SiC Near Scanning Optical Microscopy (NSOM)
- 8. Damage Threshold in SiC
- 9. Conclusion

Motivation

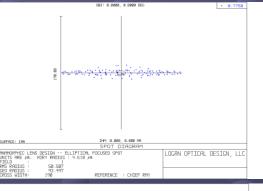


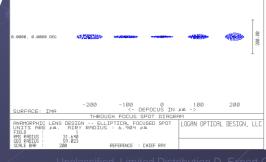
- Avoids the need for substrate dopants required for UV holographic gratings (or FBGs).
- 2. Reduces or eliminates NL self-focusing in bulk material due to very small NA and from the anamorphic/elliptical beam. References: Yariv, Appl. Phys.; Mazar, SPIE Vol. 4633.
- 3. Faster Micromachining Process
- 4. Ease of Manufacturing
- 5. Accurate/Predictable Structures since no selffocusing or filamentation occurring.

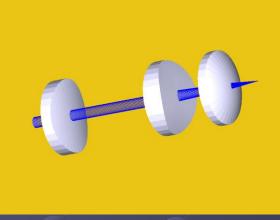
Beam Parameters: M²

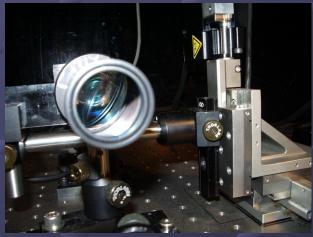
- The M2 of the femtosecond beam before the anamorphic lens.
- The data and M2 result was done using Spiricon M2 software.
- The results show a M2x = 1.55 and M2y = 1.5, which is also the Clark-MXR, Inc. specification, thus the laser was performing fairly well for these experiments.
- Pulse Width
- Raw Beam Profile
- Spectrum
- Energy JM Measurement



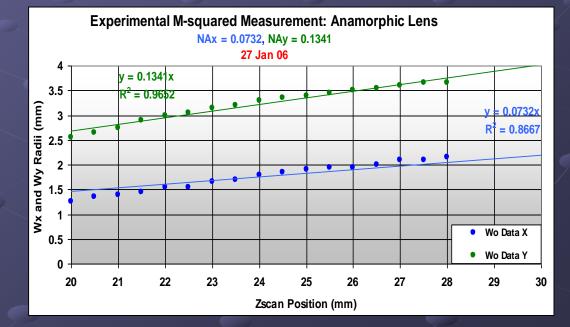



Anamorphic Lens Design:


- Zemax solid model of the anamorphic design.
- Reduces self-focusing and filamentation in bulk material.
- Ease and speed of micromachining.
- Zemax Spot Diagram:
 Shows ray distribution of 150um x 2.5um
- Zemax Through Spot Diagram:


•Shows the morphology of the ray distribution of ± 200um through focus.

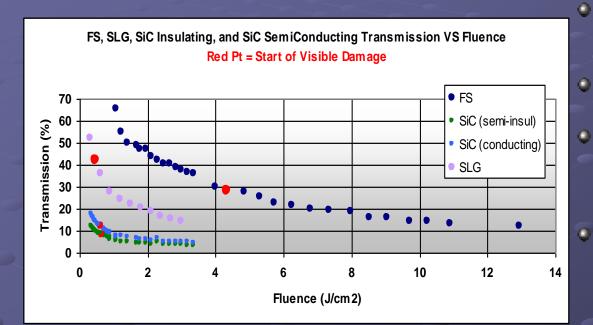
Unclassified, Limited Distribution D, Export Controll


Anamorphic Lens Characterization:

- The NA was theoretically calculated using Zemax.
- Then the NA was experimentally measured.

$$NA = \frac{D}{2f} = n\sin(\theta) = \sqrt{n_1^2 - n_2^2},$$

The results show:
•NA Zemax Theory:
•NAx = 0.0774
•Nay = 0.1289

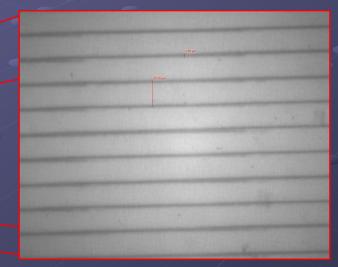

•NA Experimental: •NAx = 0.0732 •Nay = 0.1341

Ultrafast Damage Threshold in SiC

SiC Physical Damage:

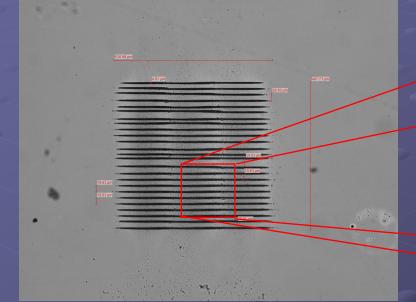
16 Visible Damage Rows

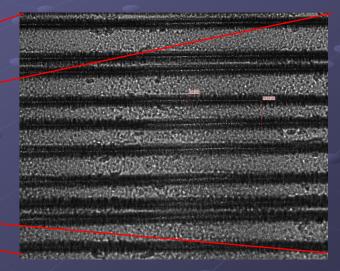
- Fused silica sample tested as a reference (threshold comparable with literature).
- Non-linear absorption causes initial drop in transmission.
- Visible physical damage typically starts at ~20-30% transmission. Observed using visible microscope.
- SiC surface imperfections (scratches) and sample clarity cause threshold variations
- Single Shot Damage Threshold Comparison:
 - Fused Silica ~4 J/cm²
 - SiC ~0.7 J/cm²
 - SLG ~ 0.4 J/cm²



SiC Semi-Insulating Grating: Pictures

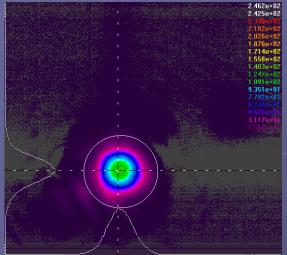
• 10X: 580um X 490um


Grating Morphology:
•3-4 anamorphic beams in a row.
•Each anamorphic line ~ 150um x 2.5um.
•25 Rows resulting in 20um spacing.

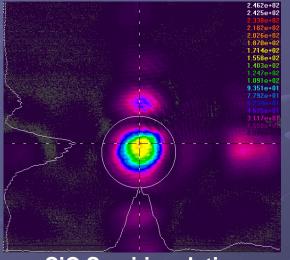

SiC Conducting Grating: Pictures

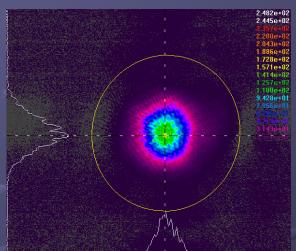
•10X: 580um X 490um

• 50X: d = 20um; Width = 2.5um



Conducting Grating Discrete Threshold: •Three Levels:


- •No Grating
- •Very poor spotted grating lines
- •Very dark grating lines
- Possibly due to many free carriers in SiC conducting



SiC Semi-Insulating Grating: Diffraction Patterns

Zero Order – Through SiC

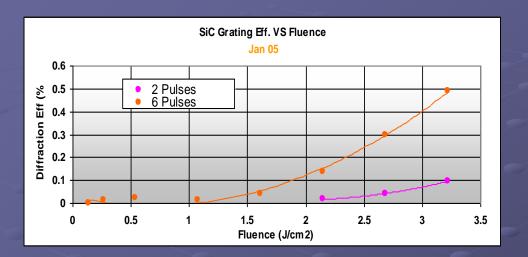
SiC Semi-insulating First Order

SiC Conducting First Order

•Each image above was a separate Spiricon image capture and calibrated power measurement.

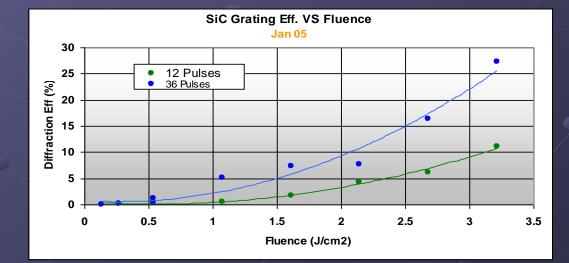
•Spiricon Cohu camera was calibrated with a Coherent FieldMax power meter.

•Λ = 632.8nm


•125mm lens was used to focus HeNe beam down to 130um diameter.

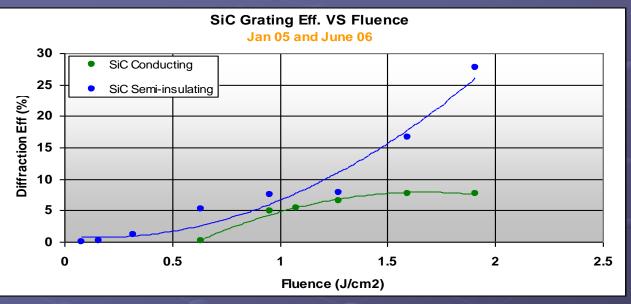
•Side lobes exist due to the morphology of the gratings.

•The Conducting diffraction pattern displays very dim side lobes since the conducting grating structure were lost in the "charring" of the surface. The 1st order is very intense.



2 and 6 Shots

Semi-insulating SiC Samples


12 and 36 Shots

SiC Grating: DE verses Energy

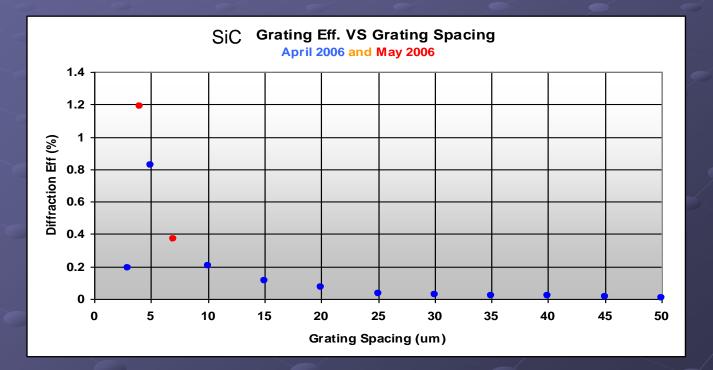
All Data is for 36 Pulses

•Semi-Insulating:

•Grating DE appears to increase quadratically without "rolling off"

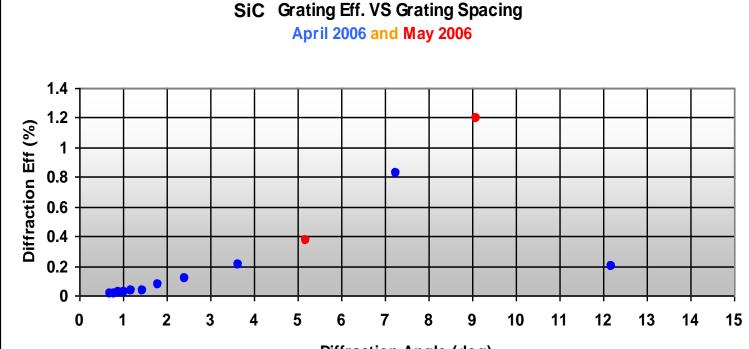
•Conducting:

•Grating DE is quadratic as well, but excessive charring causes HeNe light to be absorbed and scattered therefore "roll off".


•No gratings exist below 0.5 J/cm² due to the discrete behavior of the free electrons.

Unclassified, Limited Distribution D. Export Control

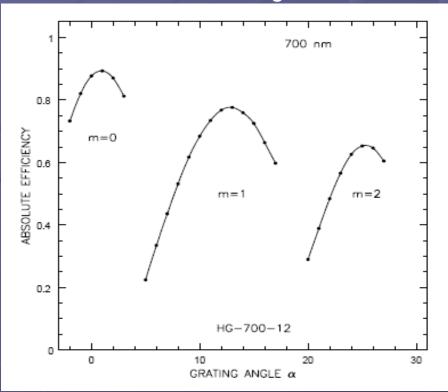
SiC Grating: DE verses Grating Spacing


All Data is for 36 Pulses: Semi-insulating SiC

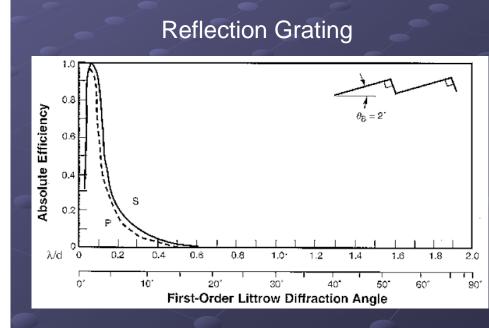
Unclassified, Limited Distribution D, Export Control

SiC Grating: DE verses Grating Spacing

All Data is for 36 Pulses: Semi-insulating SiC



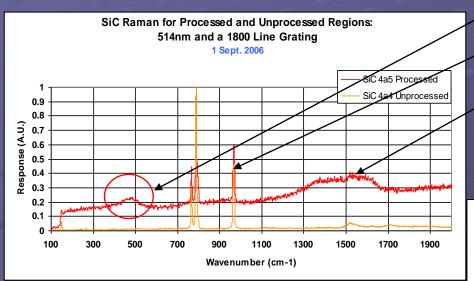
Diffraction Angle (deg)


Unclassified, Limited Distribution D. Export Controll

SiC Grating: DE verses Grating Spacing

Theoretical Data: Volume Gratings VS Reflection Gratings

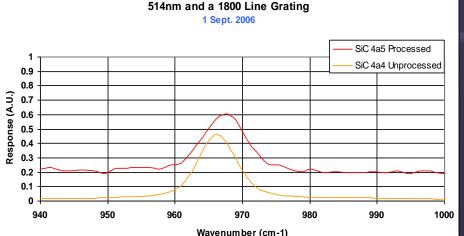
Volume Grating



Unclassified, Limited Distribution D, Export Controlle

SiC Grating: Raman Results

Nominal SiC Raman Scan:


•Extra Peak at 475 cm⁻¹
•Peak Shifts do Occur at 965 cm⁻¹
•Broadening Peak at 1512 cm⁻¹

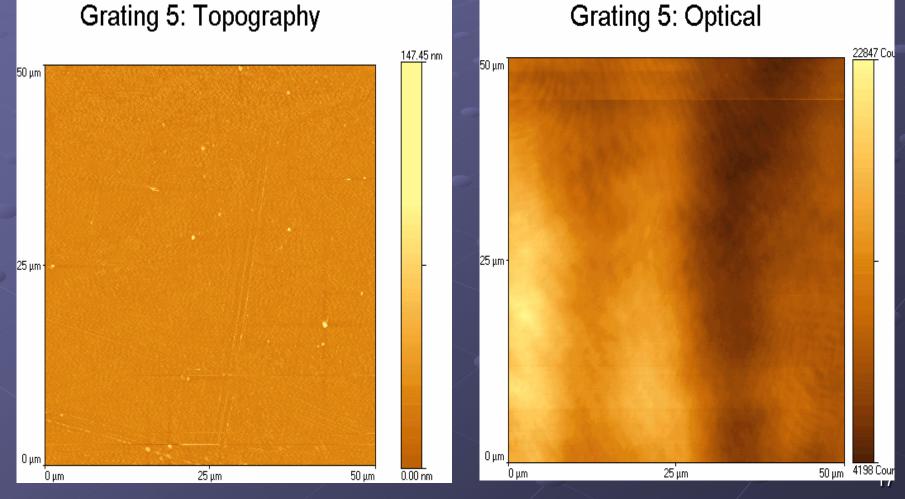
Extra Peak

Shifted Peak

Broadened Peak

Zoomed SiC Raman Scan:

SiC Raman for Processed and Unprocessed Regions:



SiC Grating: NSOM Results

Grating Below Surface:

Grating: Bright or Dark Lines?

Fourier Transform of Anamorphic Grating

$$A_{1} = Gaus\left[\left(\frac{x^{2}}{A^{2}} + \frac{y^{2}}{B^{2}}\right)\right] = UF beam Exposure$$

$$A_2 = A_1 \otimes \left[\delta(x) + \delta\delta(x - x_0) + \delta\delta(x - 2x_0)\right]$$

$$Gaus(x, y) = Gaus\left(\frac{x^2}{A^2} + \frac{y^2}{B^2}\right) = \exp\left[-\pi \cdot \left(\frac{x^2}{A^2} + \frac{y^2}{B^2}\right)\right]$$

$$t_{a}(x, y) = A_{2} \otimes \left\{ \left[\frac{1}{L} \cdot comb\left(\frac{y}{L}\right) \cdot \delta(x) \right] \cdot rect\left(\frac{y}{NL}\right) \right\}$$

Transmittance Function

Fourier Transform of Anamorphic Grating

$$t_a(x,y) = \left[\left\{ Gaus\left(\frac{x^2}{A^2} + \frac{y^2}{B^2}\right) + Gaus\left(\frac{(x \pm x_0)^2}{A^2} + \frac{y^2}{B^2}\right) + Gaus\left(\frac{(x \pm 2x_0)^2}{A^2} + \frac{y^2}{B^2}\right) \right\} \right] \quad \longleftarrow \quad \text{Femtosecond Beam}$$

$$= \otimes \left\{ \left[\frac{1}{L} \cdot comb\left(\frac{y}{L} \right) \cdot \delta(x) \right] \cdot rect\left(\frac{y}{NL} \right) \right\} \right] \bullet Gaus\left(\frac{x^2}{A^2} + \frac{y^2}{B^2} \right)$$

Grating Function

HeNe Beam

Conclusion: What's Next?

- Measure Raman on FS for a Base Line
- Re-measure SiC Raman using round spot diameter (~30um)
- Confirm Index Change in SiC
- Determine Δn Magnitude (FT regression method) and/or Develop Grating Model in Mathcad/Matlab
- Investigate Causes for Change in Index
 - X-ray Crystallography
 - Focused Ion Beam (FIB)
 - Atomic Force Microscopy (AFM)
 - Raman Spectroscopy
 - Two-Photon Fluorescence
 - Transmission Electron Microscopy (TEM)
 - Near Field Scanning Optical Microscopy (NSOM)
 - Energy dispersive X-ray spectroscopy (EDX)
 - Scanning Electron Microscope (SEM)